吴文俊在拓扑学方面,在示性类、示嵌类等领域获得一系列成果,还得到了许多著名的公式,指出了这些理论和方法的广泛应用。他还在拓扑不变量、代数流形等问题上有创造性工作。1956年吴文俊因在拓扑学中的示性类和示嵌类方面的卓越成就获中国自然科学奖一等获。
在数学机械化或机器证明方面,吴文俊从初等几何着手,在计算机上证明了一类高难度的定理,同时也发现了一些新定理,进一步探讨了微分几何的定理证明。提出了利用机器证明与发现几何定理的新方法。这项工作为数学研究开辟了一个新的领域,将对数学的革命产生深远的影响。1978年,这项成果获全国科学大会重大科技成果奖。
在中国数学史方面,吴文俊认为中国古代数学的特点是:从实际问题出发,经过分析提高,再抽象出一般的原理、原则和方法,最终达到解决一大类问题的目的。他对中国古代数学在数论、代数、几何等方面的成就也提出了精辟的见解。
吴文俊的数学研究活动,可分为前后两个时期,涉及到好几个数学领域,前期自1947年至20世纪70年代,以代数拓扑为主,他的贡献主要有两个方面:
示性类研究
通过Grassmann流形对在20世纪30年代由瑞士Stiefel、美国Whitney、苏联Pontrjajin和陈省身引入的示性类进行了系统的论述,确定了名称,探讨了相应关系,并应用于流形的构造。他引入的上同调类,后来在文献中被称之为吴示性类,他提出的蕴含拓扑不变性和同伦不变性的两个公式,后来都被称之为吴公式。由于这些结果的根本重要性,在多种问题中被广泛应用,如20世纪50年代德国的Dold,20世纪60年代德国的Hirzebruch苏联的Novikov并因而获Fields奖。
示嵌类研究
他引入具有非同伦拓扑不变量的一种一般构造方法,并系统地用之于嵌入问题,引入了复合形示嵌类,并用同样方法研究浸入问题与同痕问题,引入类似的示浸类与示痕类。瑞士Haefiger由于在1958年听到了他关于上述示嵌类研究工作的讲学,于1961年将嵌入问题作了重要推广,因而成为瑞士主要拓扑专家。美国Smale应用他的工作于维数大于4的Poincare猜测,并因而获Fields奖。他后来应用关于示嵌类的成果于电路布线问题,给出线性图平面性的新的判定准则,与以往的判定准则在性质上完全不同,尤其是可计算。
应当注意的是他在1956年前完成的研究成果的重要性,在多年以后才显现出来,至今仍在国际上广泛引用。
吴文俊的后期数学研究始于1976年,主要从事机器证明与数学机械化等方面的工作。
他提出的用计算机证明几何定理的方法,与常用的基于数理逻辑的方法根本不同,显现了无比的优越性,改变了国际上自动推理研究的面貌,被称为自动推论领域的先驱性工作,并因此获得Herbrand自动推论杰出成就奖。以下是14届国际自动推论大会上对吴文俊工作的介绍与评价。
吴文俊在自动推理界以他于1977年发明的(定理证明)方法著称。这一方法是几何定理自动证明领域的突破。
几何定理自动证明首先由HerbertGerlenter于20世纪50年代开始研究。虽然得到了一些有意义的结果,但在吴方法出现之前的二十年里这一领域进展甚微。
在不多的自动推理领域中,这种被动局面是由一个人完全扭转的。吴文俊很明显是这样一个人。吴的工作将几何定理证明自动推理的一个不太成功的领域变为最成功的领域之一。在很少的领域中,我们可以将机器证明归于一个人的工作。几何定理证明就是这样的一个领域。
吴文俊引入的求解非线性代数方程组的吴方法是求解代数方程组精确解最完整的方法之一,已经被成功地用于解决很多问题,并实现在当前流行的符号计算软件中。欧共体资助的POSSO计划(POlynomialSystemSOlving)中也有吴方法的专用软件包。
吴方法还被用于若干高科技领域,得到一系列国际领先的成果。包括曲面造型,机器人机构的位置分析,智能CAD系统(计算机辅助设计),机器人,图像压缩等。
20世纪80年代末,他提出了偏微分代数方程组的整序方法,是目前处理偏微分代数方程组的完整的构造性方法。该方法已被应用于微分几何定理机器证明和偏微分方程组求解。扩展了代数簇的通常局限无奇点情形的陈示性数于有任意奇点的陈类与陈数,且定义是可计算的,形成代数几何机械化的新篇章。
他给出了多元多项式组的零点结构定理,这是构造性代数几何发展的重要标志。
冯康
冯康(1920年9月9日~1993年8月17日)应用数学和计算数学家,中国现代计算数学研究的开拓者。生于江苏南京,少年时代家居江苏省苏州,原籍浙江绍兴。
1926年至1937年,冯康先后在江苏省立苏州中学所属实验小学、初中部和高中部就读。1939年考入中央大学(1949年更名为南京大学)电机工程系学习,两年后转物理系,主修电机、物理、数学三系主课,1944年在重庆毕业于中央大学。1946年任教于清华大学。
1951年起在中国科学院计算技术研究所工作,其间1951至1953年在苏联斯捷克洛夫数学研究所进修,1957年至1978年在中国科学院计算技术研究所任副研究员、研究员;1978年至1987年任中国科学院计算中心主任,1987年后任该中心名誉理事长。独立创造了有限元方法,自然归化和自然边界元方法,开辟了辛几何和辛格式研究新领域。
在基础数学研究中,对拓朴群结构、广义函数理论等作出贡献。在应用数学与计算数学方面,指导解决了国民经济与国防建设中的多项难题。独立于西方创造了解决椭圆形微分方程的现代系统化的计算方法——变分差分方法,即有限元方法。该成果1982年获国家自然科学奖二等奖。冯康还提出椭圆方程的自然积分方程、有限元边界元的自然耦合法,开拓了哈密尔登动力系统辛几何数值解法。
冯康贡献
早在20世纪60年代,冯康在介绍自己的研究方法时就曾说过:“我的计算数学研究都不是从阅读别人的论文开始的,而是从工程或物理原理出发的。”
冯康在成功地创始了有限元方法后,提出了哈密尔顿系统的辛几何算法,开辟了一个有广阔应用前景的全新的研究领域。他为什么要进行这一方向的研究呢?在1991年中国物理学会年会的邀请报告中,冯康提出了这样一些关于动力系统的科学问题:在遥远的未来,太阳系呈现什么景象?行星将在什么轨道上运行?地球会与其他星球相撞吗?
也许有人认为,只要利用牛顿定律,按照现有的计算方法编个程序,再应用超级计算机进行计算,经过充分长的时间,总能得到结果。但这样的计算结果可以相信吗?实际上,对这样复杂的计算,计算机或者根本得不出结果,或者得出一个完全错误的结果。即使每一步计算的误差非常小,但误差积累起来会使结果面目全非!这是计算方法问题,机器性能再好也无济于事,编程技巧再高也是无能为力的。
动力系统问题不同于椭圆边值问题,有限元方法已不能很好解决此类问题。应该用什么样的计算方法来计算动力系统问题呢?冯康在创始有限元方法的过程中已体会到,同一物理过程的各种等价的数学表述可能导致不等效的计算方法。有限元对椭圆边值问题的成功是因为选择了适当的力学体系和数学形式。
有限元不能很好地解决动态问题则是由于拉格朗日力学体系不能很好地反映其本质特征。于是冯康又回到了物理原理。在数学物理方程中列于首位的经典力学方程,有三种等价的数学形式体系:牛顿力学体系,拉格朗日力学体系和哈密尔顿力学体系。其中哈密尔顿体系一直是物理学理论研究的出发点,它的应用涉及物理、力学和工程的众多领域。但是针对哈密尔顿体系的计算方法直至20世纪80年代初仍是空白。
为什么不能从哈密尔顿系统出发发展新的计算方法呢?于是冯康便开始这一方向的研究。他发现,惟有哈密尔顿力学体系才是可供选择的研究动态问题的最适当的力学体系。由于辛几何是哈密尔顿系统的数学基础,冯康以他特有的数学直觉抓住了设计哈密尔顿系统数值方法的突破口——辛几何方法。他组织研究队伍对哈密尔顿系统的辛几何算法进行系统的理论研究和广泛的数值实验,经过十余年坚持不懈的努力,终于取得了极其丰硕的成果。
现在已知,传统的算法除了少数例外,几乎都不是辛算法,因此不可避免地带有人为耗散性等歪曲体系特征的缺陷。而冯康等人提出的为数众多的辛算法却保持了体系结构,特别在稳定性与长期跟踪能力上具有独特的优点,已在我国的动力天文、大气海洋、分子动力学等领域的计算中得到了成功的实际应用。
深入的理论分析和大量的数值实验令人信服地表明,辛算法解决了久悬未决的动力学长期预测计算问题。这一类新算法的出现甚至已改变了某些学科方向的研究途径,也将在更多的领域得到更广泛的应用。
冯康个人荣誉
实践是检验真理的唯一标准。令人欣慰的是,随着时间的推移,冯康的科学业绩愈来愈为人们所认识,其巨大的贡献在众多领域中凸现出来。
1997年春,菲尔兹奖得主、中国科学院外籍院士丘成桐教授在清华大学所作题为“中国数学发展之我见”的报告中提到,“中国近代数学能够超越西方或与之并驾齐驱的主要原因有三个,主要是讲能够在数学历史上很出名的有三个:一个是陈省身教授在示性类方面的工作,一个是华罗庚在多复变函数方面的工作,一个是冯康在有限元计算方面的工作”。
这种对冯康作为数学家(不仅是计算数学家)的高度评价,令人耳目一新。为此,许多人奔走相告产生强烈共鸣,虽则其说法很可能出乎某些人的意料之外。
随后1997年底国家自然科学一等奖授予冯康的另一项工作“哈密尔顿系统辛几何算法”,这是一项迟到的安慰奖,也是对他的科学业绩进一步的肯定。