字体大小

小字标准大字

背景色

白天夜间护眼


21世纪新材料展望

奇异的纳米材料

纳米材料,也叫做超微粒材料。它是一种小而又小,难以想像的细小粒子或粉末,所以称为超微粒子或超微粉末。

通常,把1毫米分割为1000份,每1份就叫做1微米;再把1微米分割为1000份,每1份就是1纳米。超微粒子就是指直径大小为纳米的固体颗粒,“纳米材料”的名字也便由此而来。

这样细小的颗粒,相当于袅袅轻烟中飘浮的炭黑颗粒。实际上,我国的古墨就是用天然的超微粒子——烟制成的,从而开创了纳米材料的先河。

现代的纳米材料是从20世纪80年代发展起来的,而且它的出世是和一位科学家在旅游中产生的大胆设想连在一起的。

那是1980年的一天,一位叫格莱特的德国物理学家到澳大利亚去旅游。当他独自驾车横穿澳大利亚的大沙漠时,眼前的景象使他突发奇想,将茫茫的大漠和材料中的晶粒联系起来。他是从事晶体材料研究的,知道晶体中的晶粒大小对材料性能有极大的影响,晶粒越小材料的强度就越高。于是他就想,如果组成材料的晶粒细小到只有几分纳米那么小,材料会是个什么样子呢?或许会发生“天翻地覆”的变化呢?!在异国他乡旅行中冒出这个想法使他兴奋不已。回国后,他立即开始试验和研究。经过近4年的努力,终于在1984年得到了只有几个纳米大的超细粉末。在研究中他发现,任何金属和有机、无机材料都可以制成纳米大小的粉末。更有趣的是,材料一旦变成纳米大小的粉末,无论是金属还是陶瓷从颜色上看都是黑的(由于超微粒子吸光能力强所致),其性能还真的发生了“天翻地覆”的变化。

格莱特研制超微粒子成功的消息传开后,德国和美国都有一大批科学家着了迷似地研究起纳米材料来。例如,美国著名的阿贡国家实验室用纳米大小的超细粉末制成的金属材料,其硬度比普通粗晶粒金属的硬度要高24倍。在低温下,纳米金属竟然由导电体变成了绝缘体。一般的陶瓷很脆,但用只有纳米大小的陶瓷粉末烧结成的陶瓷制品,却有良好的韧性。更使人感兴趣的是,纳米材料的熔点随超微粒子的直径减小而大大降低。比如,金的熔点是1064℃,但制成10纳米左右的金粉末后,熔点降到940℃;而5纳米大小的金粉末熔点降至830℃;2纳米金粉末的熔点只有33℃。这一特点对研制新材料大有用处。例如,许多高熔点陶瓷材料很难用一般的方法生产出用于发动机的零件,但只要事先将陶瓷制成纳米大小的粉末,就可以在较低的温度下烧结成发动机的耐热零件。

用一般机械粉碎法很难获得超微粒子。通常采用熔融金属雾化法和气体沉积法来制取超微粒子。雾化法凝结力强,产量高,但颗粒不太均匀;气体沉积法能获得清洁的超微粒子,而且颗粒大小易于控制。

80年代末,日本研制成一种冲击式超微粉碎机,能制造直径1微米以下的超微粉末。德国科学家于90年代初发明了一种生产金属超微粒子的新方法,是在一个封闭室内放进金属,然后充满惰性气体氦,再将金属加热变成蒸气,于是金属原子在氦气中冷却成金属烟雾,并使金属烟雾粘附在一个冷却棒上,再把棒上像碳黑一样的纳米大小的粉末刮到一个容器内;如果要用这些粉末制作零件,就可将它们模压成零件形状,通过烧结即可制成纳米材料零件。

这种奇特的超微粒子神通广大,应用面广。例如,将金属铝和镍的超微粒子掺到火箭的固体燃料中,就可使燃烧效率提高100倍左右。美国和俄罗斯的火箭中已普遍使用了这种办法。将超微粒子均匀地涂到磁带、录像带和磁记录器上,能使记录磁信息的能力大大增强。有些新药物制成纳米颗粒,注射到血管内可顺利进入微血管,大大提高了药物疗效。

目前,对纳米材料的研究已在世界范围内形成热潮,有许多研究小组开发出制造超微粒子的新方法,其中包括用化学或物理手段从原子或分子原始粒子合成纳米材料。一般来说,最好用原子或分子这样的原始粒子来制造纳米材料,因为这样可对材料的结构和性能进行最有效的控制。一场纳米材料革命已经开始。在不久的将来,人们将用更聪明和更有效的方法在原子、分子级控制物质,创造出更适合需要的性能优异的新材料。

走进超导世界

超导材料是一种没有电阻的材料,既能节约能量,减少电能因电阻而消耗的能量,还能把电流储存起来,供急需时使用。自从世界上以电力作为主要动力以来,就遇到两个令人头痛的问题,一是在输送电流时,不少电力因导线有电阻而发热,白白损失了相当的能量。另一个问题就是,白天的电力常常严重不足。而深夜的电力又大大富余,搞得发电机常常白天超负荷运转,深夜时却空转,电力白白浪费了。能不能把夜间富余的电力储存起来用以弥补白天电力不足的难题呢?

自从有了超导材料以来,解决这个问题就大有希望了。超导材料是怎么发现的呢?那是1911年,许多科学家发现,金属的电阻和它的温度条件有很大关系。温度高时,它的电阻就增加,温度低时电阻减少。并总结出一个金属电阻与温度之间的关系的理论公式。这时,荷兰物理学家昂尼斯为检验这个理论公式是否正确,就用水银作试验。他将水银冷却到—40℃时,亮晶晶的液体水银像“结冰”一样变成了固体,然后,他把水银拉成细丝,并继续降低温度。同时测量不同温度下固体水银的电阻,当温度降低到4K时,一个奇怪的现象发生了,水银的电阻突然变成了零。开始他不太相信这一结果,于是反复试验,但都是一样。这一发现轰动了世界的物理学界,后来科学家把这个现象叫超导现象,把电阻等于零的材料叫超导材料,而把出现超导现象的温度叫超导材料的“临界温度”。

昂尼斯和许多科学家后来又发现了28种超导元素和8000多种超导化合物材料。但出现超导现象的临界温度大多在接近绝对零度的极低温,没有什么经济价值,因为制造这种极低温本身就很花钱而且很困难。

为了寻找临界温度比较高的没有电阻的材料,世界上无数科学家奋斗了近60年,也没有取得什么进展。直到1973年,英美一些科学家才找到一种在23K出现超导现象的铌锗合金。此后这一记录又保持了10多年。

到了1986年,在瑞士国际商用公司实验室工作的贝特诺茨和缪勒从别人多次失败中吸取教训,放弃了在金属和合金中寻找超导材料的老观念,解放思想,终于发现一种镧铜钡氧陶瓷氧化物材料在43K这一较高温度下出现超导现象。这是一个了不起的成就,因此他们两人同时获得了1987年的诺贝尔物理学奖。

此后,美籍华人学者朱经武,中国物理学家赵忠贤在1987年相继发现了在785K和98K时出现超导现象的钇钡铜氧系高温超导材料。不久又发现铋锶钙氧铜系高温超导合金,在110K的温度就有超导现象;而后来发现的铊钡钙铜氧系合金的超导温度更接近室温,达120K。这样,超导材料就可以在液氮中工作了。这可以说是20世纪内科学技术上的重大突破,也是超导技术发展史上的一个新的里程碑。

至今,对高温超导材料的研究仍然方兴未艾。1991年,美国和日本的科学家又发现了球状碳分子C—60在掺钾、铯、钕等元素后,也有超导性。有些科学家预料,球状碳分子C—60经过掺金属后,将来有可能在室温下出现超导现象,那时,超导材料就有可能像半导体材料一样,在世界引起一场工业和技术革命。

超导材料应用的社会效益和经济效益,首先将表现在大功率远距离输电方面。前面我们已经谈到,目前全世界仅在电力输送上,由于线路电阻而消耗的电能约为全世界总发电量的20%左右,如果利用超导材料制成新型输电线材,那么,必将节省大量的电能损耗,对促进社会、经济的发展,将发挥十分巨大的作用。

利用超导线圈储能是超导材料的又一大作用。据有关专家估算,超导线圈的储能效果是通常水冷铜导线线圈储能的100~1000倍,而超导线圈本身并无电能损耗,只需消耗一定的制冷功率即可。对此,有位美国科学家已经实验成功。这一实验给人们很大的启示:在日常生活中,白天和傍晚,人们用电总是最多的,而到了深夜,电就用得少了。要是有一个很大的电力“仓库”,能及时地把多余的电能储存起来,到了急需时再放出来,那该有多好啊!

于是,科学家们提出了超导线圈储能的设想——在地下很深的地方,挖一个直径有100多米,上中下分三层的大坑,里面充满着超低温的液态氦气,把超导金属做成的线圈浸没在里面,这就做成了超导储能装置。要是平时有多余的电能,就可以存到超导线圈里面去,需要时随时都可以拿出来使用。由于它没有电阻的损耗,还可以长期地保存下去。有关科学家估计,到那时,世界上将出现可储存100万度电的超导设备,人们就再也不要为用电的不平衡而烦恼了。

超导材料的另一个非常有前途的用处是制造磁悬浮列车。为什么超导材料有如此大的力量能把几十上百吨的列车浮起来呢?其实道理很简单。摆弄过磁铁的人,对这一点一定很容易理解。当把一块磁铁的北极(或南极)和另一块磁铁的南极(或北极)挨近时,它们会立即吸在一起。但如果把一块磁铁的北极和另一块磁铁的北极靠近,它们就总是挨不到一块,即使用力把他们挤在一起,只要一松手,它们就会立即分开。这是因为在它们之间有一种排斥力。磁悬浮列车就是利用磁铁同极相斥的原理制成的。

但磁悬浮列车上的磁铁不是常见的那种磁铁块(即永久磁铁),而是电磁铁。电磁铁外有一个用导线绕成的线圈,线圈中有电流通过时,铁就产生磁力,只要线圈中一断电,铁就立即失去磁力。

电磁铁的线圈有两种,一种是普通的铜导线绕成的,另一种则是用超导材料导线制成的。要想把几十上百吨的列车悬空浮起来,电磁铁之间的排斥力起码得有几十上百吨。而电磁铁之间的排斥力和通过电磁线圈中的电流有直接关系,也就是说,只有通过很大的电流,才能产生很大的磁力。

但普通的铜导线有电阻,电流一大,铜导线就会发热,电流过大时,还可能使导线烧毁。所以铜导线通过的电流大小受到限制,例如直径1毫米的铜导线,只能通过6安培左右的电流,否则就会过热烧毁。

为了使铜导线通过更大的电流,需要加大导线直径,增加冷却设备,这样就会使磁悬浮列车本身的重量加重,这对提高列车的行驶速度不利。怎样才能使磁悬浮列车本身的重量减轻,又能让电磁铁产生很大的磁力呢?这似乎是一个难以克服的困难。但自从有了超导材料后,就有了克服这一困难的希望。

因为超导材料没有电阻,多大的电流通过它也不会产生焦耳热,也不会有电阻产生的损耗。因此,目前世界上许多国家都在争先恐后地研究和开发超导磁悬浮列车。超导磁悬浮列车因为不和铁轨接触,没有摩擦力,只有空气产生的阻力,因此时速可达到550公里,和普通的民航飞机的速度差不多。如果将磁悬浮列车装在真空隧道中运行,速度可达每小时1600公里,比超音速飞机还快。但建造这种隧道很难,因而不易实现。

我国在90年代初开始研制磁悬浮列车,并在“八五”末期研制出第一辆试验性磁悬浮列车,它没有车轮,依靠磁排斥力使车体浮起来10毫米左右。用直线电动机推进。这辆磁悬浮列车是由铁道部长春客车工厂制造的,铁道科学院、国防科技大学、西南交通大学、长沙铁道学院、大连铁道学院等单位共同参加了研制。

日见成熟的激光家族

世界上第一束激光是1960年5月问世的。今天,激光已走进人类社会的各个领域:工业、农业、国防、科研和人们的生活,成为几乎人人皆知的一个词。但它还是高技术,一种深入到人类生活各个方面的高技术。君不见激光唱机乐曲回荡,激光电影奇妙异常,激光排版快速完美,激光打印清晰优美,激光彩色复印犹如原画,激光手术精细准确,激光武器神速神威,激光化学反应随心所欲,激光俘获准确无误……

限于篇幅,我们隐去激光的产生和激光器的制作,而着重阐述激光材料及其应用前景。

这些年来,激光历经发现、发展到高技术应用的峥嵘岁月,不断取得研究成果,而其中对激光材料的追求贯穿于整个历程的始终,现在已形成了激光材料家族。

固体激光

固体激光器的基质材料是晶体材料或玻璃材料。在晶体或玻璃中均匀地掺入少量离子,如红宝石中的铬离子,钕玻璃中的钕离子。因为真正发光的是激活的离子,所以,用这类材料制作的激光器称为固体离子激光器。发光的激活离子有:稀土元素钕、镝、钬、镨等;过渡金属元素铬、锰、钴、镍等;还有铀等放射性元素。

基质材料有上百种晶体,但真正实用的仅红宝石和钇铝石榴石晶体;有几十种玻璃材料,实用的有硅酸盐、硼酸盐、磷酸盐、氟化物和硼硅玻璃等。

固体激光器具有体积小、坚固可靠、脉冲功率高和应用广泛等优点。

气体激光

实验发现,除了固体材料可以作为激光材料外,气体也可以作为工作物质。气体激光器是目前品种最多、应用很广泛的激光器,且气体激光器结构简单、操作方便、造价低廉、稳定性好。

目前应用的有氦氖气体激光器、二氧化碳气体激光器、氩离子激光器和氮分子激光器等。后者输出功率大、效率高,激光波长为106微米,在大气中可以传得很远。不同波长的光波在大气中传播时,被吸收的程度不一样,波长为106微米的光波大气吸收小,故称为“大气窗口”,光波很容易通过这个“窗口”而传向天际。

激光装置半导体激光器

半导体激光材料有几十种,最成熟的有砷化镓和镓铝砷等。由于半导体激光器体积小、重量轻、寿命长、效率高和结构简单,所以,在航天器、飞机、军舰、车辆上应用特别适宜。这种激光器工作波长范围宽,而且可以通过外加电场、磁场、温度和压力等改变激光的波长,调谐控制方便。由于半导体激光器制作得小巧玲珑,总功率不高,适合于低功率系统使用。

此外,还有功率巨大的化学激光器、短波准分子激光器和自由电子激光器等。

神秘的金属记忆力

人类有记忆能力,这是天经地义的事,没有什么可怀疑的。如果说金属也有记忆能力,那人们会感到很惊奇。而事实上,确实发现金属也有记忆能力。

1958年,美国海军军械实验室冶金师布勒在研究镍—钛(Ni—Ti)合金时无意中发现,在不同温度下镍—钛合金相碰撞时,发出不同的声音。刚从炉子里取出的合金棒相碰撞发出清脆的声音,而冷却到室温后,则发暗哑迟钝的声音。他敏锐地意识到,温度对合金的组织结构和硬度可能有很大影响,但并未注意到是一种记忆现象。后来在1963年的一次实验中,需要用镍—钛合金丝,因为得到的镍—钛合金丝是弯弯曲曲的,使用起来不方便,所以实验前需把这些合金丝一根根拉直,然后做实验。实验中出现了令人惊异的奇怪现象:实验温度升到一定值时,这些原来拉直的合金丝突然无一例外地全部变成弯弯曲曲的形状。反复多次实验,结果都一样,而且发现无论你把镍—钛合金丝拉得多么直,当温度达到某一定值即称为转变温度时,就会完完全全恢复到原来的弯曲形状。这个实验过程我们可以给出一个有点人情味的描述。当环境温度远离转变温度时。镍—钛合金是没有“知觉”的,可以任凭你折腾它,随意改变它的形状。但是当环境温度一旦达到转变温度时,则镍—钛合金丝即被“唤醒”,恢复知觉,立即有“记忆力”,马上恢复到本来的面目。科学家把这种现象称为形状记忆效应。具有这种效应的合金称为形状记忆合金。镍—钛合金的转变温度为40℃,为了好记也可以称为“记忆温度”或“唤醒温度”。

合金具有奇特的形状记忆能力,从本质上说,是合金内部微观结构固有的变化规律所决定的。固态金属合金中,原子是按一定的规律有序排列的。有的合金随环境温度的变化,内部原子的排列方式也会发生变化。当温度回到原来的数值时,合金内部原子的排列又会恢复到原来的排列方式。

下页图描绘了三种不同材料进行拉伸变形,解除外力和加热等操作后所发生的结果。从中可以看到形状记忆合金与普通金属材料的不同是很明显的,而它与超弹性材料的不同在于超弹性材料是在解除外力后即恢复原状。而记忆合金要由“转变温度”唤醒其记忆力后才恢复原状。

记忆合金、天线记忆过程经过20年来的发展,形状记忆合金从镍—钛合金开始,发展到镍—钛系合金、铜系合金和铁系合金等,形成系列产品。

1969年,美国阿波罗登月舱曾在月亮上安置直径数米的半球形天线。这座天线是用当时研制成功不久的形状记忆合金材料按设计要求制造的,然后降低温度把它压成一团,装进登月舱送上月宫。当天线在太阳光的照耀下温度升高到记忆温度(转变温度)时,天线的记忆力被“唤醒”,恢复了本来的形状,于是一座半球形天线便屹立于月球上了。现在,数千颗人造卫星正在天外遨游,为了向地球发射有用的信息,往往要安装形状记忆合金天线,成为人类获取天外信息所不可缺少的重要材料。

在医学上,镍—钛合金与生物体有较好的相容性,可以在人体内作为固定折断骨骼的插销,做成接骨板,使断骨紧紧相接;用记忆合金做成极精细的网络,然后降低温度压成细丝,插入血管,由于体温使它恢复了网络形状,所以在血管里起到血栓的过滤器作用;还可用于牙齿矫形弓丝、女性胸罩、人造心脏等。由于形状记忆合金应用于医学,故成为有利于人类康复的好材料。

工程上某些领域如航空、航天、核工业和海底输油管道等,为了保证系统万无一失,管道连接处常采用记忆合金管套,用形状记忆合金加工成内径比要接的管子的外径小4%的套管,然后在低温度下将套管直径扩大8%,再把要连接的两根管子从套管两端插入,当温度升到常温后,有记忆的套管就恢复原形,使管子紧密连接。

形状记忆合金可以作为智能材料应用。例如,利用它在加热和冷却时会产生伸缩力的特点,因而做成驱动机器人手臂的机构,这样就不需要传统的促动器上的齿轮、凸轮等机械机构,而由智能材料(记忆合金)自身的功能来表现。

“善解人意”的智能材料

1992年9月22日,美国阿拉巴马州铁路桥突然崩塌;90年代中期,韩国汉城有一座大型公路桥也出现同样事故……由此使人们担心,世界上的其他桥梁是不是哪一天也会突然崩塌呢?人们的这种担心并非多余,这是因为——桥梁无论是由何种材料建成的,它都有一定的使用年限。但是,所有桥梁的使用年限未必都相同。正如预料人的寿命一样,人们无法精确预测某一座桥的使用年限。如果把还能使用的桥梁毁了去造新的桥,那样做固然保险,但却未免太可惜。假如确信还能使用,说不定某一天却突然损坏,这样就将造成无法挽救的惨祸。因此,无论如何得有一个好办法,以便来检查、确定某座桥是可以使用呢,还是不久就要损坏。

1985年8月,由日本羽田机场飞往大阪的一架大型客机在群马县某山麓坠毁。后经查明,事故原因系由于由飞机后部隔板上裂缝泄漏的空气造成的冲击波把尾翼刮跑所引起的。那么,为什么事先没有发现这个裂缝呢?要是世界上的一些桥梁也存在着没有发现的裂缝而一旦发生崩塌呢?每念至此,不禁令人们不寒而栗。科学技术发展到今天,连这等重要的事都不能应付,着实叫人担心。

如果桥梁或飞机也能发出“疲劳了,似乎马上就要损坏了”的某种信号,人们便可有针对性地进行修理或更换零部件。假如要到发生致命性破坏时才发出信号,那就太晚了。

20世纪90年代初,在美国弗吉尼亚理工学院和弗吉尼亚州立大学挂出了一个“智能材料研究中心”的牌子。科学家们正在研究各种办法,试图使飞机上的关键结构具有自己的“神经系统”、“肌肉”和“大脑”,使它们能感觉到即将出现的故障,并及时向飞行员发出警报。他们设想的办法是,在高性能的复合材料中嵌入细小的光纤,这种纵横交错布满在复合材料中的光纤就能像“神经”那样感受到机翼上受到的不同压力。这是因为通过测量光纤传输光时的各种变化,就可测出飞机机翼承受的不同压力。在极端严重的情况下,光纤会断裂,光传输就会中断,于是就能发出即将出现事故的警告。

这家“智能材料研究中心”的科学家还研究一种能自动减弱某些振动的飞机座舱壁智能材料,以便使飞机能安全、平稳地飞行。他们采用的方法是,利用装在机舱壁内的压电材料,使舱壁振动的方向正好和原来的振动方向相反,这样就等于消除了座舱壁和窗框产生疲劳断裂的根源。

但是,科学家们当务之急是开发出能对桥梁、建筑物和飞机机体等人类生活中造价高昂的物体结构受到的破坏发出早期警报的智能系统。而这些智能系统需要使用不同功能的智能材料。这些智能材料有三种基本类型:

(1)由遇到电和磁场后能够扩大、缩小或弯曲的物质构成的,如陶瓷或薄膜等压电材料。它们受到挤压后会产生电压,或者反过来说,在施加电压时会发生弯曲。这种材料的灵敏度很高,甚至用压电聚合物或凝胶制成的人造肌肉和皮肤已能在试验中“读出”盲文。

(2)压电材料虽然能在千分之几秒内作出反应,但它们的大小、长短变化有限。因此,科学家将压电材料和叫做“形状记忆合金”的第二类智能材料搭配起来使用。这样,它们即使在变形程度达到15%的情况下,也能“记住”先前的外形,通过加热即可恢复。

(3)第三类智能材料包括电或磁的流变体。这种神奇的液体在遇到电流或磁场时会改变它的流动性能。当它处于常态下,可以毫不费力地用勺子搅动;但是当其中有电流穿过时,它会突然间变得像混凝土一样黏稠。利用这种液体的如此奇特性能,可以制造出新型的汽车悬架和传动装置,以及减振系统和可变阻力的健身器械。

当前,科学家们正在研制新的智能材料,并能使它们与有生命的物体一样敏感。他们希望给从墙壁到飞机机翼的所有物体装上用特殊材料制成的眼睛、大脑和肌肉。

智能材料的潜力很大,应用还在不断扩展。例如,可将智能材料用来建造工厂的烟囱,当烟囱排放的烟气超过污染规定时它就改变颜色,从而监视对大气的污染。又如,在修筑冬天结冰的路面时加入智能材料,这种公路一旦结冰,路面就会变色,以提醒司机行车注意。

在未来的新世纪中,智能材料将会大放异彩,创造出人间的奇迹。

有机硅

化学家把石英砂中的硅和有机大分子结合起来,创造出一种“杂交”新材料,人们叫它“有机硅”。它既有无机物的特点,又有有机物的长处,能承担其他材料难以负担的“任务”。现在,有机硅产品已经有2000种以上,常用的有硅油、硅橡胶、硅树脂等1000多种。

用无色透明的油状液体——硅油,来处理丝绸、棉布和化纤等纺织物,织物就显得爽滑柔软,色泽鲜艳,而且耐磨防蛀。假如用硅油把衣服处理一下,雨水洒在衣服上,就像落在荷叶上一样不透水,却能透气,穿上这种衣服不会感到闷热。用硅油揩擦眼镜、照相机镜头、钟表和灯泡玻璃,能增加透明度,水和脏物却难以沾上,还有防霉作用。硅油可以帮助医生诊断疾病。在胃镜检查时,只要服用5毫升硅油乳剂,胃腔内的泡沫便迅速消失,使胃镜的视野清晰,大大提高检查的准确性。

硅橡胶、硅树脂等,也像硅油一样神通广大。有的病人切除喉头,装了硅橡胶人造喉头,讲话、吃饭和呼吸,都不会有多大影响。所以,现在的人造器官,大部分都是有机硅制造的。另外,牙膏中用有机硅作添加剂,刷牙时能在牙齿表面形成比较牢固的薄膜,并能保持10小时以上,可以防止牙垢形成和细菌的侵袭。

有机硅材料废弃后,无论烧毁或者埋入地下,都不会污染周围环境,它的前途无限广阔。

高吸水性树脂

世界上吸水本领最大的要数海绵。但现在人们已合成出一种吸水性胜过海绵的高分子材料,称为高吸水性树脂,其吸水量可达自身重量的500—3000倍。

这是一种神奇的白色粉末,每颗高分子树脂微粒,就像一个小小的蓄水池。把它们撒到干旱少雨的沙漠地,能在夜间汲取从地下渗上来的水分。如果预先拌好肥料和水,就能在沙漠地区栽培农作物。用它做尿布,吸水好,又卫生。用来做卫生棉、清洁餐巾,更受人们欢迎。这种高吸水性树脂没有毒性,它和药物、化妆品混在一起,药物会缓慢地释放出来,延长药效。用它做成水果的包装袋,新鲜水果就能长久保鲜。

高吸水性树脂的吸水本领,在于聚合物中有许多能吸引住水的“基团”,它像一双双能拉住水分子的“手”一样。当整个大分子上的“手”拉住了许许多多的水分子后,一颗白色的粉末,变成了一个“吃饱”水的小水球。

这种神奇的粉末,有的是用淀粉、纤维素天然高分子为骨架,通过接枝共聚的方法制造的;有的是用化学合成方法制造的;还有的是用腈纶废丝综合利用得到的。

上一章
离线
目录
下一章
点击中间区域
呼出菜单